Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Vijayakumar N. Sonar,^a Sundar Neelakantan,^a Maxime Siegler^b and Peter A. Crooks^a*

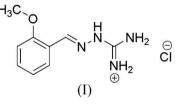
^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study T = 90 K Mean σ (C–C) = 0.003 Å R factor = 0.043 wR factor = 0.119 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the structure of the title compound, $C_9H_{13}ClN_4O$, the guanidinium group is nearly coplanar with the 2-methoxyphenyl ring, C=N having *E* geometry. The chloride ions are involved in intermolecular hydrogen bonds with the H atoms of the aminoguanidinium ion.

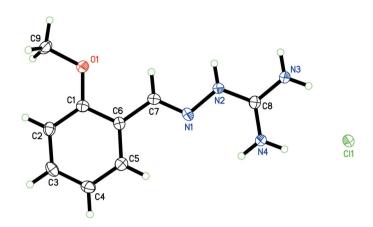

guanidinium chloride

(E)-1-[(2-Methoxyphenyl)methyleneamino]-

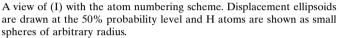
Received 19 December 2006 Accepted 20 December 2006

Comment

The basic guanidine unit is part of many biologically active compounds. Guanylhydrazones derived from arylaldehydes and aminoguanidine also contain the guanidine unit and they exhibit a wide range of biological activities. An important representative of this class of compounds is the centrally acting antihypertensive agent guanabenz (2,6-dichlorobenzylideneaminoguanidine) in the treatment of high blood pressure (Baum, et al., 1969). In view of their biological activities, we have synthesized a series of guanylhydrazones. The title compound, (I), was synthesized by the condensation reaction of 2-methoxybenzaldehyde with aminoguanidine hydrochloride under reflux in methanol, to afford a single geometrical isomer. The present X-ray crystallographic determination was carried out in order to confirm the doublebond geometry, and to obtain more detailed information on the conformation of the cation.


The molecular structure and atom-numbering scheme of (I) are shown in Fig. 1, and selected bond lengths and angles are listed in Table 1. In the title compound, the C7=N1 double bond connecting the guanidinium group with the 2-methoxy-phenyl ring system has *E* geometry. The guanidinium group is nearly coplanar with the 2-methoxyphenyl ring, facilitating partial conjugation between them as indicated by shortening of the C6-C7 bond in comparison with the standard value for a C_{ar} -Csp² single bond [1.470 (15) Å; Allen *et al*, 1987].

The observed bond lengths C1-O1 and C9-O1 are comparable to the values of aromatic methoxy bonds (Domiano *et al.*, 1979), and there is an asymmetry of the angles around atom C1, as is typical of anisoles.


In the crystal structure, each chloride ion interacts *via* hydrogen bonding with three N-H bonds of the guanidinium ion (Table 2).

All rights reserved

© 2007 International Union of Crystallography

Figure 1

Experimental

A mixture of 2-methoxybenzaldehyde (204 mg, 1.5 mmol) and aminoguanidine hydrochloride (110 mg, 1 mmol) was taken up in methanol (15 ml) and the mixture was refluxed for 8 h. After evaporation of the solvent, the residue was stirred in chloroform and filtered to remove unreacted 2-methoxybenzaldehyde in the filtrate. The solid product was dried and recrystallized from methanol.

Crystal data

 $\begin{array}{l} C_9H_{13}N_4O^+\cdot Cl^-\\ M_r = 228.68\\ \text{Monoclinic, } P2_1/c\\ a = 6.9550 \ (1) \ \text{\AA}\\ b = 10.9089 \ (2) \ \text{\AA}\\ c = 14.5481 \ (3) \ \text{\AA}\\ \beta = 92.034 \ (1)^\circ\\ V = 1103.09 \ (3) \ \text{\AA}^3 \end{array}$

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.908, T_{max} = 0.978$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.052526 reflections 137 parameters H-atom parameters constrained Z = 4 D_x = 1.377 Mg m⁻³ Mo K α radiation μ = 0.33 mm⁻¹ T = 90.0 (2) K Plate, colourless 0.30 × 0.20 × 0.07 mm

4915 measured reflections 2526 independent reflections 1837 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ $\theta_{\text{max}} = 27.5^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.061P)^2 \\ &+ 0.3498P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.41 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

C1-O1	1.367 (2)	C8-N3	1.330 (2)
C6-C7	1.461 (3)	C8-N2	1.335 (2)
C7-N1	1.275 (2)	C9-O1	1.434 (2)
C8-N4	1.324 (2)	N1-N2	1.381 (2)
O1-C1-C2	123.84 (18)	O1-C1-C6	115.80 (17)
O1-C1-C2-C3 C5-C6-C7-N1	179.52 (17) 5.8 (3)	C1-C6-C7-N1 C7-N1-N2-C8	-176.25 (18) 178.96 (17)

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots Cl1^{i}$	0.88	2.39	3.1861 (17)	150
$N3-H3A\cdots Cl1$	0.88	2.55	3.3035 (17)	144
$N3-H3B\cdots Cl1^{i}$	0.88	2.46	3.2435 (17)	149
$N4-H4A\cdots Cl1$	0.88	2.41	3.1964 (18)	149
$N4-H4B\cdots Cl1^{ii}$	0.88	2.62	3.3035 (17)	135

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y - 1, -z + 1.

H atoms were positioned geometrically and treated as riding, with C-H = 0.95 or 0.98 Å for aromatic and methyl atoms, respectively, N-H = 0.88 Å, and $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO*–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL/PC* (Sheldrick, 1995); software used to prepare material for publication: *SHELX97* and local procedures.

This investigation was supported by the National Institute of Alcohol Abuse and Alcoholism grant AA12600.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987) J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Baum, T., Eckfeld, D. K., Metz, N., Dinish, J. L., Rowles, G., Van Pelt, R., Shropshire, A. T., Fernandez, S. P., Gluckman, M. I. & Bruce, W. F. (1969). *Experientia*, 25, 1066–1067.

Domiano, P., Nardelli, M., Balsamo, A., Macchia, B. & Macchia, F. (1979). Acta Cryst. B35, 1363–1372.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.